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Multi-Level Contextual RNNs With Attention
Model for Scene Labeling
Heng Fan , Xue Mei, Danil Prokhorov, and Haibin Ling

Abstract— Image context in image is crucial for improving
scene labeling. While the existing methods only exploit local
context generated from a small surrounding area of an image
patch or a pixel, the long-range and global contextual infor-
mation is often ignored. To handle this issue, we propose a
novel approach for scene labeling by multi-level contextual
recurrent neural networks (RNNs). We encode three kinds of
contextual cues, viz., local context, global context, and image
topic context in structural RNNs to model long-range local and
global dependencies in an image. In this way, our method is
able to “see” the image in terms of both long-range local and
holistic views, and make a more reliable inference for image
labeling. Besides, we integrate the proposed contextual RNNs
into hierarchical convolutional neural networks, and exploit
dependence relationships at multiple levels to provide rich spatial
and semantic information. Moreover, we adopt an attention
model to effectively merge multiple levels and show that it
outperforms average- or max-pooling fusion strategies. Extensive
experiments demonstrate that the proposed approach achieves
improved results on the CamVid, KITTI, SiftFlow, Stanford
Background, and Cityscapes data sets.

Index Terms— Scene labeling, scene understanding, contextual
recurrent neural networks (CRNNs), attention model, intelligent
transportation system.

I. INTRODUCTION

SCENE labeling, also known as semantic segmentation,
refers to assigning one of semantic classes to each pixel

in an image, which plays an important role in intelligent
vehicles since vehicles need to analyze and understand envi-
ronments around them. For example, the vehicles must be
able to discriminate building, car, pedestrian, road and so on
in a traffic scene (see Figure 1). To address this problem,
a large body of researches [1], [5], [8], [17], [27], [31], [40],
[43]–[45], [50], [51], [57] have been done on scene labeling.

For image labeling, knowledge of a long-range context is
crucial. However, existing methods mainly focus on exploiting
short-range context. They are prone to misclassify visually
similar pixels which actually belong to different classes.
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Fig. 1. Some quantitative labeling results on CamVid. First row: input
images. Second row: groundtruth. Third row: our prediction labels.

For example, ‘sand’ and ‘road’ pixels are hard to dis-
tinguish with limited short-range context. However, if we
consider long-range context for ‘sand’ (‘water’ pixels) and
‘road’ (‘grass’ pixels) pixels, their differentiations become
conspicuous.

Recurrent neural networks (RNNs) [16] have been success-
fully applied to natural language processing (NLP) [18], [20]
owing to the capability of encoding long-range contextual
information in sequential data. There are attempts to bring
RNNs to computer vision community [4], [8], [14], [15], [19],
[37], [45], [53], [62]. Among them, [45] proposes the graphical
RNNs to model long-range dependencies among image units.

Inspired by this idea, we present the multi-level contextual
RNNs for scene labeling. Specifically, we incorporate three
kinds of contextual cues, i.e., local context, global context
and image topic context in structural RNNs to model long-
range local and global dependencies among image units. For
local context, we consider eight neighbors for each image
unit. Different from previous methods, this local context is
encoded in RNNs, and the local contexts of all image units
are thus connected in a structural undirected cyclic graph,
which leads to long-range local contexts in images. However,
conventional RNNs are utilized to handle temporal data and
not suitable to be directly applied to spatially distributed
data. We thus decompose the structural undirected cyclic
graph into directed acyclic graphs as in [45]. Differently
from [45], we consider assigning different weights to the
neighbors of each image unit because different neighbors
play different roles in inference. For example, the neighbors
whose labels are the same with image unit should play a
more important role while others should be assigned less
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Fig. 2. Illustration of our approach. We adopt CNNs to extract deep features from multiple levels, i.e., the 3th , 4th and 5th pooling layers, which encode rich
spatial and semantic information. Four multiple contextual RNNs are utilized to model dependencies at multiple levels. In addition, we use a novel attention
model, which takes into account the importance of different levels for pixel classification, to effectively merge these feature maps. With the help of upsampling
layers, an end-to-end network is built for image labeling. Note that the image topic features are extracted from input (not shown here for simplicity).

importance. Moreover, we incorporate global and image topic
contexts into RNNs which let RNNs ‘see’ the image in a wider
view. Taking advantages of hierarchical convolutional neural
networks (CNNs) into account, we integrate our contextual
RNNs into CNNs, and utilize dependencies in multiple levels
to provide rich spatial and semantic information. An attention
model is adopted to effectively fuse these multiple levels, and
we show the benefits of attention model over two common
fusion strategies. Integrating CNNs with RNNs, we propose
an end-to-end network as shown in Figure 2. Experiments on
five challenging benchmarks showcase the effectiveness of our
approach.

In summary, we make the following contributions:

• We propose the contextual RNNs which encode three
kinds of contextual cues to model long-range dependen-
cies in an image for scene labeling.

• We use different dependencies in multiple levels by
integrating RNNs and CNNs to provide rich spatial and
semantic information for image labeling. Besides, a novel
attention model is adopted to improve effectiveness.

• Experiments on CamVid [3], KITTI [21], SiftFlow [27],
Stanford-background [24] and Cityscapes [34] show that
our method outperforms other scene labeling approaches.

II. RELATED WORK

As a fundamental task in computer vision, image labeling
has attracted increasing attention in recent years. Early
non-parametric approaches try to transfer labels of training
data to query images and perform label inference in a
probabilistic graphical model (PGM). Liu et al. [27] propose
a non-parametric image parsing method by estimating ‘SIFT
Flow’ between images, and infer the labels of pixels in a
markov random field (MRF). Krähenbühl and Koltun [26]
build a fully connected graph to incorporate higher order
dependencies among image units. Tighe and Lazebnik [50]
introduce a superparsing method for scene parsing.

Yang et al. [57] suggest to incorporate context information
to improve image retrieval and superpixel classification for
semantic labeling. Reference [24] presents a approximate
nearest neighbor algorithm for semantic segmentation
by developing a structured graph over superpixels.
Álvarez et al. [1] propose to model an image set as a
fully connected pairwise conditional random field (CRF) [26]
defined over image units (pixels or superpixels) with Gaussian
edge potentials for efficient scene parsing. Reference [51]
proposes to combine per-exemplar sliding window detector
for image parsing task. Despite promising results for scene
labeling, the above methods only use hand-crafted features
for image representation, which is less robust in complex
scene.

The CNNs [32], which demonstrate the power in extracting
high-level feature representations [46], have been used for
scene labeling. Farabet et al. [17] propose to learn hierarchical
features with CNNs for scene labeling. Long et al. [29]
introduce the fully conventional networks (FCN) for semantic
labeling. In addition, to incorporate more spatial information,
they adopt a skip strategy to fuse features from multiple
levels. Ghiasi and Fowlkes [22] propose a multi-resolution
reconstruction approach based on a Laplacian pyramid to
refine segment boundaries in scene parsing. Shuai et al. [44]
adopt CNNs as parametric model to learn discriminative
features and integrate it with a non-parametric model to infer
pixel labels. Pinheiro and Collobert [40] utilize CNNs in a
recurrent way to model spatial dependencies in image by
attaching raw input with output of CNNs. Wang et al. [55]
propose a joint approach of priori convolutional neural
networks at superpixel level and soft restricted context transfer
for street scene labeling. Gao et al. [23] suggest to embed
contour information and location prior for segmentation.
Liang et al. [31] suggest to model relationships among
intermediate layers with RNNs for scene labeling.
Badrinarayanan et al. [6] propose an encoder-decoder
architecture for semantic segmentation. a similar framework
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Fig. 3. Decomposition of undirected cyclic graph into four directed acyclic graphs. The green solid dots represent image units, red solid dots are start points
in directed acyclic graphs, and w denotes the weight. Note that the inputs for RNNs are pooling layers from CNNs, and here we just illustrate this process.
(a) input. (b) undirected cyclic graph. (c) directed acyclic graph (southeast). (d) directed acyclic graph (southwest). (e) directed acyclic graph (northwest).
(f) directed acyclic graph (northeast).

is presented in [35]. However, they do not consider
long-range dependencies among image units for image
labeling. To alleviate this issue, Zheng et al. [60] propose
to utilize CRFs as recurrent neural networks to improve the
capacity of CNNs in delineating objects. Different from [60],
Lin et al. [28] propose to use CRFs to learn the patch-patch
context in CNNs for scene labeling. Yu and Koltun [56]
propose to improve contextual information in CNNs by
expanding receptive fields of filters and present the dilated
convolutional networks for dense segmentation. To the same
end, Chen et al. [11] present atrous convolution and combine
it with the fully connected CRFs for semantic segmentation.

Recently, RNNs have drawn increasing attention in com-
puter vision owing to the capability of capturing long-range
contextual information. Oord et al. [37] propose to model
discrete probability of raw pixel values with RNNs for
image completion. Graves et al. [19] extend one dimen-
sional RNNs to multi-dimensional RNNs for handwriting
recognition. Based on [19], Byeon et al. [8] propose a
two-dimensional long-short term memory (LSTM) for scene
parsing. This method is able to model long-range local context
in image. Visin et al. [53] propose to use RNNs to model
structured information of local generic features extracted from
CNNs for segmentation.

The most relevant works to ours are [62] and [45].
Zuo et al. [62] propose to use hierarchical two dimensional
RNNs to model spatial dependencies among image regions
from multiple scales, and concatenate these dependencies for
image classification. Shuai et al. [45] use graphical RNNs
to model long-range context in image for scene labeling.
Though [45] and [62] both utilize RNNs, our work is different
from them in three aspects: (1) Considering different levels
of importance of different neighbors for each image unit,
we assign different weights to each of the neighbors. In doing
so, we propose the weighted structural RNNs. However,
both [45] and [62] treat all neighbors of an image unit the
same. (2) For image labeling, global and topic contexts also
play crucial roles in distinguishing pixels. We propose the
contextual RNNs by incorporating local, global and topic
contexts into structural RNNs. Our contextual RNNs are able
to capture both long-range local and global dependencies
among image units and thus see the entire image in a wider
view. Nevertheless, [45] and [62] only take the local context
into consideration in RNNs. (3) To exploit rich spatial and
semantic information, we integrate the contextual RNNs with
CNNs and utilize various dependencies in multiple levels.

An attention model is adopted to merge information from these
multiple levels. However, [45] only models the dependencies
among image units in one layer (the 5t h pooling layer). In [62],
RNNs are used to model spatial dependencies among image
regions from one layer with multiple scales, and the outputs
of different scales are simply concatenated, which is different
from ours using the attention model to combine features from
different layers.

III. THE PROPOSED APPROACH

A. Basic Recurrent Neural Networks (RNNs)

RNNs are developed to model dependencies in temporally
ordered data. Specifically, the hidden layer h(s) in RNNs at
time step s is represented by a non-linear function over current
input x (s) and hidden layer at previous time step h(s−1). The
output layer y(s) is connected to hidden layer h(s).

Given an input sequence {x (s)}s=1,2,··· ,S , the hidden and
output layers at each time step s are computed with{

h(s) = φ(U x (s) + Wh(s−1) + bh)

y(s) = σ(V h(s) + by)
(1)

where U , W and V denote shared weight matrices between
input and hidden layer, previous hidden layer and current
hidden layer, and hidden layer and output layer respectively.
bh and by are two bias terms, and φ(·) and σ(·) are non-
linear activation functions. Since the inputs are progres-
sively stored in hidden layers, RNNs thus can keep such
“distributed” memory and model long-range dependencies in
sequence.

B. Contextual Recurrent Neural Networks (CRNNs)

Different from RNNs, our CRNNs encode three contextual
cues which are local, global and topic contexts. This section
will introduce the incorporation of these contexts, and forward
and backward operations of CRNNs.

1) Local Context: One of our goals is to model long-
range context in image. For an image, the interactions among
image units can be represented as an undirected cyclic graph
(see Figure 3(b)). Due to loopy structure of undirected cyclic
graph, however, the aforementioned basic RNNs cannot be
directly applied to images. To address this issue, we approx-
imate the topology of undirected cyclic graph by the com-
bination of several directed acyclic graphs as in [45], and
use variant RNNs to model long-range local context in these
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Fig. 4. Illustration of extracting global feature. The d is number of channel
of input. The extracted global feature can capture more context information.

directed acyclic graphs as shown in Figure 3. For each directed
acyclic graph, the main difference is the position of start
point.

Let G = {V, E} denote the directed acyclic graph, where
V = {vi }i=1,2,··· ,N denotes vertex set and E = {ei j } is edge
set in which ei j represents directed edge from vi to v j . The
structure of RNNs follows the same topology as G. A forward
propagation sequence can be seen as traversing G from start
point, and each vertex relies on its all predecessors. For
vertex vi , therefore, the hidden layer h(vi ) is expressed as a
non-linear function over current input x (vi ) at vi and sum-
mation of hidden layers of all its predecessors. Specifically,
the hidden layer h(vi ) and output layer y(vi ) at each vi are
computed with{

h(vi ) = φ (U x (vi ) + W
∑

v j∈PG(vi )
h(v j ) + bh)

y(vi ) = σ(V h(vi ) + by)
(2)

where PG(vi ) denotes the predecessor set of vi in G. In [45],
the recurrent weight matrix W is shared across all the pre-
decessors of vi . For vi , nevertheless, different predecessors
should be assigned with different weights. For example,
the predecessors whose labels are the same with vi may be
more important in inferring the label of vi while others play
less important roles. Thus we revise Eq (2) as follows{

h(vi ) = φ (U x (vi ) + ∑
v j ∈PG(vi )

W (v j )h(v j ) + bh)

y(vi ) = σ(V h(vi ) + by)
(3)

where W (v j ) denotes the weight matrix of predecessor v j . With
Eq (3), RNNs can model long-range context in images.

2) Global Context: To further improve the ability of RNNs
for pixel classification, we also consider global context in
RNNs. For the input (i.e., pooling layer in CNNs), we first
partition it into 3 × 3 blocks. Then max-pooling is performed
on each block. Such partition and max-pooling result in nine
feature vectors, which are concatenated as a global feature for
input. Figure 4 illustrates the extraction of the global feature.

Let g = [g1, g2, · · · , g9]T denote the global feature,
where gi represents feature obtained by max-pooling over
block i . To incorporate global contextual information into
RNNs, we revise Eq (3) as the following⎧⎨

⎩
h(vi ) = φ (U x (vi ) + ∑

v j ∈PG(vi )

W (v j )h(v j ) + Gg + bh)

y(vi ) = σ(V h(vi ) + by)
(4)

Fig. 5. Visualization of GIST feature. Images (a) and (e) are inputs,
(b) and (f) are their topic features. With these topic contexts, our RNNs are
able to distinguish similar pixels. Images (c) and (g) are our results, and
(d) and (h) are the groundtruth.

where G is the recurrent weight matrix for global feature g.
Through Eq (4), the RNNs can capture both long-range local
and global contextual information in the image.

3) Image Topic Context: Long-range local and global con-
texts can help to distinguish visually similar pixels. However,
for some situations, it is still hard to classify pixels only with
these two kinds of contexts. To further improve the ability of
RNNs to distinguish pixels, we propose to incorporate topic
context information into RNNs. For instance, the ‘sand’ pixels
in Figure 5(a) and ‘road’ pixels in Figure 5(e) are very similar.
The dependencies of local features are limited to correctly
classify these two kinds of pixels. Besides, most part of these
two images are semblable which results in confused global
context features of these two images. The context obtained by
combining local and global features is too strong to distinguish
similar pixels and may result in worse consequence. However,
the topic features of these two images are different (see
Figure 5(b) and Figure 5(f)). If the RNNs know their topic
features, it will be easier to discriminate these similar pixels.

In this paper, we adopt GIST feature [38] as the topic
feature. GIST feature represents holistic abstraction of an
image, and has been applied to recognition [12], [54] and
image retrieval [61]. For our network, the GIST feature is
extracted from raw input image, denoted as t . To encode topic
context, we revise Eq (4) as follows⎧⎨
⎩

h(vi ) = φ (U x (vi ) + ∑
v j ∈PG(vi )

W (v j )h(v j )+Gg+Tt+bh)

y(vi ) = σ(V h(vi ) + by)
(5)

where t is topic feature extracted from raw input and T denotes
its recurrent weight matrix. Note that topic context is different
from global context. The global context encoded in global
feature is still pixel-level while topic context encoded in GIST
feature is image-level.

By incorporating local, global and topic contexts, our
CRNNs are able to model the dependencies among image
units in a wider view and thus become better at classifying
pixels.

4) Forward and Backward of CRNNs: The CRNNs are
trained via forward pass and backward propagation. With
Eq (5), we can compute the forward operation of our CRNNs.
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For backward propagation, we need to calculate derivatives
at each vertex in the CRNNs. For each vertex in the directed
acyclic graph, it is processed in the reverse order of forward
propagation sequence. To compute the derivatives at vertex vi ,
we need to look at the forward passes of all its successors. Let
SG(vi ) denote the direct successor set for vi in G. For each
vk ∈ SG(vi ), its hidden layer is computed with{

h(vk) = φ (U x (vk) + W (vi )h(vi ) + M + Gg + T t + bh)

y(vk) = σ(V h(vk) + by)
(6)

where

M =
∑

vl∈PG(vk)−{vi }
W (vl )h(vl )

Combining Eq (5) and (6), we can see that the
errors back-propagated to the hidden layer at vi

come from two sources: directed errors from vi

(i.e., ∂y(vi )

∂h(vi )
) and a summation over indirected errors from all its

successors vk ∈ SG(vi ) (i.e.,
∑

vk

∂y(vk )

∂h(vi )
= ∑

vk

∂y(vk )

∂h(vk )
∂h(vk )

∂h(vi )
).

Therefore, the derivatives at vertex vi can be obtained with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dh(vi ) = V T σ ′(y(vi ))+ ∑
vk∈SG(vi )

(W (vi ))T dh(vk) ◦ φ′(h(vk))

∇W (vi ) = ∑
vk∈SG(vi )

dh(vk) ◦ φ′(h(vk))(h(vi ))T

∇U (vi ) = dh(vi ) ◦ φ′(h(vi ))(x (vi ))T

∇G(vi ) = dh(vi ) ◦ φ′(h(vi ))(g)T

∇T (vi ) = dh(vi ) ◦ φ′(h(vi ))(t)T

∇b(vi )
h = dh(vi ) ◦ φ′(h(vi ))

∇V (vi ) = σ ′(y(vi ))(h(vi ))T

∇b(vi )
y = σ ′(y(vi ))

(7)

where ◦ represents the Hadamard product, σ ′(·) = ∂L
∂y(·)

∂y(·)
∂σ

is the derivative of loss function L with respect to output
function σ , and φ′(·) = ∂h

∂φ . We utilize the average cross
entropy loss function to compute L. Note that the superscript
T denotes transposition operation.

With Eq (5) and (7), we can perform forward and backward
passes on one directed acyclic graph. In this paper, we decom-
pose the undirected cyclic graph into four directed acyclic
graphs along southeast, southwest, northwest and northeast
directions as in [45]. Figure 3 visualizes the decomposition.
Let GU = {G1,G2,G3,G4} denote the undirected cyclic graph,
where G1,G2,G3,G4 represent the four directed acyclic graphs
respectively. For each Gm (m = 1, 2, · · · , 4), we can get the
corresponding hidden layer hm by performing our CRNNs.
The summation of all hidden layers are fed to output layer.
We use Eq (8) to express this process⎧⎪⎪⎪⎨

⎪⎪⎪⎩
h(vi )

m = φ (Um x (vi ) + ∑
v j ∈PGm (vi )

W
(v j )
m h

(v j )
m

+Gg + T t + bhm )

y(vi ) = σ (
∑

Gm∈GU Vmh(vi )
m + by)

(8)

where Um , W
(v j )
m , G, T , Vm , and bhm are matrix parameters

and bias term for Gm , by is the bias term for final output, and

PGm (vi ) denotes the predecessor set of vi in Gm . Note that
the global and topic contexts are shared across four directed
acyclic graphs. With Eq (8), we can compute loss L as follows

L = − 1

N

∑
vi∈GU

C∑
j=1

log(y(vi )
j Y (vi )

j ) (9)

where N denotes the number of image units, C is the number
of classes, y(vi ) represents class likelihood vector and Y (vi ) is
the binary label indicator vector for image unit at vi . The error
generated at vi is computed with

∇x (vi ) =
∑

Gm∈GU U T
m dh(vi )

m ◦ φ′(h(vi )
m ) (10)

C. Multi-Level Contextual RNNs With Attention Model
We integrate our CRNNs into CNNs to model dependencies

in intermediate layers. In CNNs, different layers possess vari-
ous information. The high-level layers capture more semantic
information, whereas low-level layers encode more spatial
information. For scene labeling, both semantic and spatial
pieces of information are crucial. Therefore, we use CRNNs to
exploit dependencies in multiple levels and combine them to
provide rich semantic and spatial information for scene label-
ing. To fuse these multiple levels, average-pooling [9], [13]
and max-pooling [39] are two simple and common strategies.
However, different levels with different scales contain various
contexts. In this paper, we propose to adopt the attention
model [2], [10] to exploit the importance of different levels.
In [2], attention model is used to softly weight the importance
of words in a source sentence when predicting a target word,
and [10] adopts attention model to weight different input data.
In our work, we use attention model to weight multiple levels.

Specifically, let { f q
i,c}q=1,2,··· ,Q denote Q feature maps of

Q levels, where i ranges over all the spatial positions and c ∈
{1, 2, · · · , C}. Note that in our work, the feature maps from
pooling layers go through CRNNs and thus have the same
number of classes. All the feature maps are resized to have
the same resolution via upsampling operation [29]. We denote
zi,c to be weighted sum of feature maps at (i, c) for all levels
as follows

zi,c =
∑Q

q=1
ω

q
i · f q

i,c (11)

where the weight ω
q
i is calculated with

ω
q
i = exp(rq

i )∑Q
e=1 exp(re

i )
(12)

where rq
i represents the feature map generated by the attention

model at position i for level q . The adopted attention model
consists of two convolutional layers. The first layer contains
512 filters with kernel size 3 × 3 and the second layer has Q
filters with kernel size 1 × 1, where Q denotes the number
of levels. The weight ω

q
i demonstrates the importance of

feature at position i in level q . As a consequence, the attention
model is able to determine how much attention to pay to for
features at different positions and levels. Note that the average-
pooling and max-pooling are two special cases of our attention
model. Specifically, Eq. (11) will become average-pooling if
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the weights ω
q
i are replaced by 1/Q, and it will be max-

pooling if the summation operation becomes the max operation
and ω

q
i ≡ 1 for any i and q . Besides, the attention model

can be jointly trained with the networks because it allows a
gradient of loss function to be back-propagated [2], [10].

D. Global View of Network Architecture

In this section, we describe the global view of our network
architecture. As shown in Figure 2, we adopt multiple CRNNs
for features from different levels, and each CRNNs take three
kinds of cues as input, which are topic, local and global
features. The topic (or GIST) feature is extracted from raw
RGB image before feeding it to network, and local and global
features are extracted from the corresponding pooling layer.
After obtaining these three kinds of features, we feed them
to CRNNs and obtain output feature (see Eq. (5)) with same
resolution of input pooling layer. With multiple layers, we can
obtain various output features. These output features (after
upsampling) fused via an attention model to get final output.

IV. EXPERIMENTAL RESULTS

We test our approach on four benchmarks, including
three traffic scene datasets (CamVid [3], KITTI [21] and
Cityscapes [34]) and two outdoor scene datasets (SiftFlow [27]
and Stanford-background [24]). Three metrics, pixel accuracy,
class accuracy (i.e., the average of pixel accuracies per class)
and mean IoU (Intersection over Union) are adopted to eval-
uate the performance of our method.

A. Implementation Details

We borrow the architecture and parameters from the
VGG-16 network [46] before the 5th pooling layer. Three inde-
pendent CRNNs are utilized to model image unit dependencies
in multiple levels, i.e., the 3rd , 4th and 5th pooling layers. The
dimensions of hidden layers of CRNNs are set to the same
as the channels of the 3rd , 4th and 5th pooling layers. Non-
linear activation function φ = max(0, x) and σ is softmax
function. In practice, we apply σ after final upsampling layer
(see Figure 2) and use Eq (9) to compute the loss between
prediction and groundtruth. The full networks (including
CNNs and CRNNs parts) are trained by stochastic gradient
descent (SGD) with momentum. The learning rate is initialized
to be 10−3 and decays exponentially with the rate of 0.9 after
10 epochs. The batch sizes for both training and testing
phases are set to 1. The results are reported after 60 training
epochs. The entire network is implemented in MATLAB using
MatConvNet [52] on a single NVIDIA GTX TITAN Z GPU
with 6GB memory.

B. CamVid Dataset

CamVid is a road scene dataset which contains 701 images
of day and dusk scenes [3]. Each image is labelled with
11 classes. We follow the usual split protocol [51] (468/233)
to obtain training and testing images. Table I demonstrates
out results and comparisons with state-of-the-art methods, and
Table II shows the individual class accuracy performance.

TABLE I

QUANTITATIVE RESULTS (%) AND COMPARISONS ON CAMVID

TABLE II

INDIVIDUAL CLASS ACCURACY (%) PERFORMANCE ON CAMVID

As shown in Table I, our method outperforms other
approaches on pixel accuracy. However, [45] performs better
than our method on class accuracy. We analyse two reasons for
this. First, [45] utilizes additional information in the dataset.
In [45], the frequency of each class is calculated. Based on
the frequency, a weighting function that attends to rare classes
is adopted. In this way, the accuracy for non-frequent classes
are phenomenally boosted. In this work, we do not use the
class balancing strategy but a boost could be expected if
we have used it. Second, there is only one scene involved
in CamVid (i.e., the road scene). In this situation, the func-
tion of global and topic contexts is unconspicuous. Besides,
we show that the attention model (Oursat t) performs better
than average-pooling (Oursavg) or max-pooling (Oursmax)
strategies.

C. KITTI Dataset

The KITTI dataset [21] contains 252 images of urban scene
annotated by [59]. Each image is labelled with 10 semantic
classes. We follow the split protocol as in [59] in which
140 images are used for training while the rest for test-
ing. Table III shows our results and comparisons with other
approaches.

As shown in Table III, the proposed method outperforms
other methods on both pixel and class accuracies. Our
method significantly improves the pixel accuracy from 89.3%
to 92.1%, and the class accuracy from 65.4% to 70.9%.
Though [59] proposes to fuse image and point cloud infor-
mation and adopts post-processing, our method obtains better
results by incorporating context information.
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TABLE III

QUANTITATIVE RESULTS (%) PERFORMANCE ON KITTI

TABLE IV

QUANTITATIVE RESULTS (%) AND COMPARISONS ON SIFTFLOW

D. SiftFlow Dataset

The SiftFlow dataset [27] consists of 2688 images captured
from 8 typical scenes and annotated with 33 classes. Following
the training/testing split protocol in [27], 2488 images are
used for training while the rest for testing. The quantitative
results and comparisons with state-of-the-art methods are
listed in Table IV, and Table V shows the individual class
accuracy. Note that only 30 classes appear in the testing
images.

As shown in Table IV, our proposed approach outper-
forms other methods on both pixel and class accuracies. Our
ML-CRNNsat t can improve the pixel accuracy from 85.3% to
86.9%, and the class accuracy from 55.7% to 57.7%. Though
weighting function is adopted to improve performance in [45],
our method still achieves better class accuracy because our
global and topic contexts are helpful in distinguishing pixels
which belong to rare classes.

E. Stanford-Background Dataset

The Stanford-background dataset [24] has 715 images
annotated with 8 semantic classes. Following [44] and [48],
the dataset is randomly partitioned into 80% (572 images)
for training and the rest (143 images) for testing with
5-fold cross validation. As shown in Table VI, the proposed
method achieves better results compared with state-of-the-
art approaches. Table VII demonstrates the individual class
accuracy.

From Table VI, we can see the effectiveness of our
ML-CRNNsat t with attention model. Both pixel and class
accuracies are significantly boosted. The pixel accuracy is

improved from 84.6% to 87.2%, and the class accuracy is
improved from 77.3% to 78.4%.

F. Cityscapes Dataset

The Cityscapes dataset [34] contains 5000 images of street
traffic scene captured from 50 different European cities.
Following the training/testing split protocol in [34],
2975 images are used for training, 500 images for validation,
and the rest for testing. In total, 19 classes are considered
for training and evaluation. The test set ground-truth is
withheld by the organizers, and we evaluate the proposed
method on their evaluation server.1 The test results are shown
in Table VIII. Figure 6 displays some qualitative labeling
results of testing images in the Cityscapes.

Among the compared approaches, [11] and [56] improve
context information in networks by expanding the receptive
fields of convolution filters. Different from [11] and [56],
we adopt the CRNNs to model the dependencies among image
units to improve context information. Compared to [11] with
mean IoU 70.4% and [56] with mean IoU 67.1%, our approach
achieves better performance with mean IoU 71.2%, showing
the power of CRNNs.

G. Analysis of Different Context Features

In our ML-RNNs model, we utilize three contexts, i.e., local
context, global context and topic context to improve the
discriminative ability of RNNs. In order to evaluate the effect
of these contexts for the final performance, we develop extra
experiments on the four datasets. For each dataset, the baseline
experiment only uses the local context for RNNs. Experiments
are shown in Table IX.

From Table IX, we can see that compared with the baseline
model, both global and topic context features are able to
improve the performance of our method, and their roles are
different. For datasets Camvid [3] and KITTI [21], all images
belong to the same topic (traffic scene). Though incorporation
of topic context can improve performance, the global context
shows better improvement. For datasets SiftFlow [27] and
Stanford-background [24], by contrast, our model with topic
context performs better than that with global context because
these two datasets contain images with various topics, and
topic context captures more discrimination that global context.

1https://www.cityscapes-dataset.com/benchmarks/#pixel-level-results.
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TABLE V

INDIVIDUAL CLASS ACCURACY (%) PERFORMANCE ON SIFTFLOW

TABLE VI

QUANTITATIVE RESULTS (%) AND COMPARISONS

ON STANFORD-BACKGROUND

TABLE VII

INDIVIDUAL CLASS ACCURACY (%) PERFORMANCE

ON STANFORD-BACKGROUND

H. Discussion on Computation Time

To further analyze the performance of the proposed
approach, we compare the computation time at test phase
under different conditions. In our experiments, the input
images are resized to 384×384. Due to the limited GPU mem-
ory, for KITTI [21] and Cityscapes [34] datasets, we segment
the input images into three image patches, and then resize
them to 384×384. In evaluation, the outputs are resized to
the size of input images. For KITTI [21] and Cityscapes [34]
datasets, the final outputs are obtained by the combination of
input image patches. The computation time is demonstrated
in Table X.

From Table X, we can see that using more com-
plex context features increases computation time at test

Fig. 6. Qualitative labeling results on Cityscapes. First row: input images.
Second row: ground truth. Third row: our prediction labels.

phase, and the extraction of topic feature is slight slower
than that of global feature. Compared to our method
with simple max-pooling (0.48 seconds) and average-
pooling (0.45 seconds), the approach with the attention
model cost more computation time (0.70 seconds) because
the attention model consists of two extra convolutional
layers.

I. Discussion on Limitations

In this paper, we propose the ML-RNNs to model the
dependencies among image units for scene labeling. Though
the ML-RNNs can improve the performance, there exist
two situations where misclassifications of pixels still happen.
In specific, one case is that similar objects of different cate-
gories are close to each other and even overlapped. As shown
in the Figure 7(a), the pole (shown in the red rectangle) is
very similar to the building and overlapped with it. In this
case, the proposed method misclassifies the pole into the
building class because their appearances are too similar to be
discriminated by the context information. Another case is that
the objects are too small. In the blue rectangles in Figure 7(a),
the small traffic signs lose much information in networks
due to pooling operations. Without enough information, it is
difficult to use context to parse them out.
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TABLE VIII

QUANTITATIVE RESULTS (%) AND COMPARISONS ON CITYSCAPES

TABLE IX

COMPARISONS OF DIFFERENT CONTEXT FEATURES ON FOUR DATASETS

TABLE X

ANALYSIS OF COMPUTATION TIME (SECOND) AT TEST PHASE

Fig. 7. Demonstration of misclassification situations. The red rectangle
contains a pole and the blue rectangles contain very small traffic signs.
(a) Input image. (b) Groundtruth. (c) Prediction result.

V. CONCLUSION

In this paper, we propose the ML-CRNNs for scene labeling
by exploiting dependencies among image units in different
levels. We first introduce our CRNNs which are capable of
capturing both long-range local, global and topic contexts in an

image. To exploit different dependence relationships at multi-
ple levels (e.g., lower levels contain more spatial dependencies
while higher levels consist of more semantic dependencies),
we insert our CRNNs into CNNs to model both spatial and
semantic dependencies among image units. In addition, we use
an attention model to learn how much attention to pay to
different levels and propose our ML-CRNNs. Experiments on
five benchmarks evidence the effectiveness of our approach.

REFERENCES

[1] J. M. Álvarez, M. Salzmann, and N. Barnes, “Exploiting large image
sets for road scene parsing,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 9, pp. 2456–2465, Sep. 2016.

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. ICLR, 2015, pp. 1–15.

[3] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in
video: A high-definition ground truth database,” Pattern Recognit. Lett.,
vol. 30, no. 2, pp. 88–97, 2009.

[4] S. Bell, C. Zitnick, K. Bala, and R. Girshick, “Inside-outside net:
Detecting objects in context with skip pooling and recurrent neural
networks,” in Proc. CVPR, 2016, pp. 2874–2883.

[5] S. R. Bulò and P. Kontschieder, “Neural decision forests for semantic
image labelling,” in Proc. CVPR, 2014, pp. 81–88.

[6] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[7] C. Cadena and J. Košecká, “Semantic segmentation with heterogeneous
sensor coverages,” in Proc. ICRA, 2014, pp. 2639–2645.

[8] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling with
LSTM recurrent neural networks,” in Proc. CVPR, 2015, pp. 3547–3555.

[9] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. CVPR, 2012, pp. 3642–3649.

[10] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. Yuille, “Attention to
scale: Scale-aware semantic image segmentation,” in Proc. CVPR, 2016,
pp. 3640–3649.

[11] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “DeepLab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs,” IEEE
Trans. Pattern Anal. Mach. Intell., 2017. [Online]. Available: http://
ieeexplore.ieee.org/document/7913730/

[12] L. Cao, J. Luo, F. Liang, and T. S. Huang, “Heterogeneous feature
machines for visual recognition,” in Proc. ICCV, 2009, pp. 1095–1102.

[13] J. Dai, K. He, and J. Sun, “BoxSup: Exploiting bounding boxes to
supervise convolutional networks for semantic segmentation,” in Proc.
ICCV, 2015, pp. 1635–1643.

[14] H. Fan and H. Ling, “SANet: Structure-aware network for visual
tracking,” in Proc. CVPR Workshop, 2017, pp. 42–49.

[15] H. Fan, X. Mei, D. Prokhorov, and H. Ling, “RGB-D scene labeling
with multimodal recurrent neural networks,” in Proc. CVPR Workshop,
2017, pp. 9–17.

[16] J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179–211, Mar. 1990.

[17] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[18] A. Graves, “Sequence transduction with recurrent neural networks,” in
Proc. ICML Workshop, 2012.



3484 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2018

[19] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Proc. NIPS, 2009,
pp. 545–552.

[20] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. ICASSP, 2013, pp. 6645–6649.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. CVPR, 2012,
pp. 3354–3361.

[22] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction
and refinement for semantic segmentation,” in Proc. ECCV, 2016,
pp. 519–534.

[23] J. Gao, Q. Wang, and Y. Yuan, “Embedding structured contour and loca-
tion prior in siamesed fully convolutional networks for road detection,”
in Proc. ICRA, 2017, pp. 219–224.

[24] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into geomet-
ric and semantically consistent regions,” in Proc. ICCV, 2009, pp. 1–8.

[25] S. Gould, J. Zhao, X. He, and Y. Zhang, “Superpixel graph label transfer
with learned distance metric,” in Proc. ECCV, 2014, pp. 632–647.

[26] P. Krähenbühl and V. Koltun, “Efficient inference in fully con-
nected CRFs with Gaussian edge potentials,” in Proc. NIPS, 2011,
pp. 109–117.

[27] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing:
Label transfer via dense scene alignment,” in Proc. CVPR, 2009,
pp. 1972–1979.

[28] G. Lin, C. Shen, A. Hengel, and I. Reid, “Efficient piecewise training
of deep structured models for semantic segmentation,” in Proc. CVPR,
2016, pp. 3194–3203.

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. CVPR, 2015, pp. 3431–3440.

[30] L. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr, “What,
where and how many? Combining object detectors and CRFs,” in Proc.
ECCV, 2010, pp. 424–437.

[31] M. Liang, X. Hu, and B. Zhang, “Convolutional neural networks with
intra-layer recurrent connections for scene labeling,” in Proc. NIPS,
2015, pp. 937–945.

[32] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[33] Z. Liu, X. Li, P. Luo, C. Loy, and X. Tang, “Semantic image segmen-
tation via deep parsing network,” in Proc. ICCV, 2015, pp. 1377–1385.

[34] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. CVPR, 2016, pp. 3213–3223.

[35] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. ICCV, 2015, pp. 1520–1528.

[36] M. Najafi, S. T. Namin, M. Salzmann, and L. Petersson, “Sample
and filter: Nonparametric Scene parsing via efficient filtering,” in Proc.
CVPR, 2016, pp. 607–615.

[37] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” in Proc. ICML, 2016, pp. 1747–1756.

[38] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[39] G. Papandreou, I. Kokkinos, and P.-A. Savalle, “Untangling local and
global deformations in deep convolutional networks for image classifica-
tion and sliding window detection,” in Proc. CVPR, 2015, pp. 390–399.

[40] P. Pinheiro and R. Collobert, “Recurrent convolutional neural networks
for scene labeling,” in Proc. ICML, 2014, pp. 82–90.

[41] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “Efficient
convNet for real-time semantic segmentation,” in Proc. IEEE Intell. Veh.
Symp. (IV), Jun. 2017, pp. 1789–1794.

[42] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” in Proc. CVPR, 2012, pp. 2759–2766.

[43] A. Sharma, O. Tuzel, and M.-Y. Liu, “Recursive context propaga-
tion network for semantic scene labeling,” in Proc. NIPS, 2014,
pp. 2447–2455.

[44] B. Shuai, G. Wang, Z. Zuo, B. Wang, and L. Zhao, “Integrating
parametric and non-parametric models for scene labeling,” in Proc.
CVPR, 2015, pp. 4249–4258.

[45] B. Shuai, Z. Zuo, B. Wang, and G. Wang, “DAG-recurrent neural
networks for scene labeling,” in Proc. CVPR, 2016, pp. 3620–3629.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015, pp. 1–14.

[47] M. Seyedhosseini and T. Tasdizen, “Semantic image segmentation with
contextual hierarchical models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 5, pp. 951–964, May 2016.

[48] N. Souly and M. Shah, “Scene labeling using sparse precision matrix,”
in Proc. CVPR, 2016, pp. 3650–3658.

[49] P. Sturgess, K. Alahari, L. Ladický, and P. H. S. Torr, “Combining
appearance and structure from motion features for road scene under-
standing,” in Proc. BMVC, 2009, pp. 1–11.

[50] J. Tighe and S. Lazebnik, “Superparsing: Scalable nonparametric image
parsing with superpixels,” in Proc. ECCV, 2010, pp. 352–365.

[51] J. Tighe and S. Lazebnik, “Finding things: Image parsing with regions
and per-exemplar detectors,” in Proc. CVPR, 2013, pp. 3001–3008.

[52] A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural networks
for MATLAB,” in Proc. ACM MM, 2015, pp. 689–692.

[53] F. Visin et al., “ReSeg: A recurrent neural network-based model for
semantic segmentation,” in Proc. CVPR Workshop, 2016, pp. 41–48.

[54] G. Wang, D. Hoiem, and D. Forsyth, “Building text features for object
image classification,” in Proc. CVPR, 2009, pp. 1367–1374.

[55] Q. Wang, J. Gao, and Y. Yuan, “A joint convolutional neural networks
and context transfer for street scenes labeling,” IEEE Trans. Intell.
Transp. Syst. [Online]. Available: http://ieeexplore.ieee.org/document/
8012463/

[56] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in Proc. ICLR, 2016, pp. 1–13.

[57] J. Yang, B. Price, S. Cohen, and M.-H. Yang, “Context driven
scene parsing with attention to rare classes,” in Proc. CVPR, 2014,
pp. 3294–3301.

[58] C. Zhang, L. Wang, and R. Yang, “Semantic segmentation of urban
scenes using dense depth maps,” in Proc. ECCV, 2010, pp. 708–721.

[59] R. Zhang, S. A. Candra, K. Vetter, and A. Zakhor, “Sensor fusion
for semantic segmentation of urban scenes,” in Proc. ICRA, 2015,
pp. 1850–1857.

[60] S. Zheng et al., “Conditional random fields as recurrent neural net-
works,” in Proc. ICCV, 2015, pp. 1529–1537.

[61] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas, “Query specific
fusion for image retrieval,” in Proc. ECCV, 2012, pp. 660–673.

[62] Z. Zuo et al., “Learning contextual dependence with convolutional
hierarchical recurrent neural networks,” IEEE Trans. Image Process.,
vol. 25, no. 7, pp. 2983–2996, Jul. 2016.

Heng Fan received the B.E. degree from the Col-
lege of Science, Huazhong Agricultural University,
Wuhan, China, in 2013. He is currently pursuing
the Ph.D. degree with the Department of Com-
puter and Information Science, Temple University,
Philadelphia, PA, USA. His research interests
include computer vision, pattern recognition, and
machine learning.

Xue Mei received the B.S. degree in electrical engi-
neering from University of Science and Technology
of China, Hefei, China, and the Ph.D. degree in
electrical engineering from University of Maryland
at College Park, College Park, MD, USA. From
2008 to 2012, he was with the Automation Path-
Finding Group, Assembly and Test Technology
Development and Visual Computing Group, Intel
Corporation, Santa Clara, CA, USA. He is currently
a Senior Research Scientist with the Department of
Future Mobility Research, Toyota Research Institute,

Ann Arbor, MI, USA—a Toyota Technical Center Division. His current
research interests include computer vision, machine learning, and robotics
with a focus on intelligent vehicles research.



FAN et al.: MULTI-LEVEL CRNNs WITH ATTENTION MODEL FOR SCENE LABELING 3485

Danil Prokhorov was a Research Engineer
with the St. Petersburg Institute for Informatics
and Automation, Russian Academy of Sciences,
Saint Petersburg, Russia. He has been involved in
automotive research since 1995. He was an Intern
with the Scientific Research Laboratory, Ford Motor
Company, Dearborn, MI, USA, in 1995. In 1997, he
became a Research Staff Member with Ford Motor
Company, where he was involved in application-
driven research on neural networks and other meth-
ods. Since 2005, he has been with the Toyota

Technical Center, Ann Arbor, MI, USA. He is currently in charge of the
Department of Future Mobility Research, Toyota Research Institute, Ann
Arbor.

Haibin Ling received the B.S. and M.S. degrees
from Peking University, in 1997 and 2000, respec-
tively, and the Ph.D. degree from University of
Maryland, in 2006. From 2000 to 2001, he was
an Assistant Researcher with Microsoft Research
Asia. From 2006 to 2007, he held a post-
doctoral position with the University of California at
Los Angeles. He joined Siemens Corporate Research
as a Research Scientist. Since 2008, he has been
with Temple University, where he is currently an
Associate Professor. He was a recipient of the Best

Student Paper Award at ACM UIST 2003 and NSF CAREER Award in 2014.
He serves as an Associate Editor for IEEE TRANSACTIONS ON PAMI and
Pattern Recognition. He has served as the Area Chairs for CVPR 2014 and
CVPR 2016.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


